3.1 \(\int \cos ^7(c+d x) (A+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=92 \[ -\frac{(A+4 C) \sin ^7(c+d x)}{7 d}+\frac{3 (A+2 C) \sin ^5(c+d x)}{5 d}-\frac{(3 A+4 C) \sin ^3(c+d x)}{3 d}+\frac{(A+C) \sin (c+d x)}{d}+\frac{C \sin ^9(c+d x)}{9 d} \]

[Out]

((A + C)*Sin[c + d*x])/d - ((3*A + 4*C)*Sin[c + d*x]^3)/(3*d) + (3*(A + 2*C)*Sin[c + d*x]^5)/(5*d) - ((A + 4*C
)*Sin[c + d*x]^7)/(7*d) + (C*Sin[c + d*x]^9)/(9*d)

________________________________________________________________________________________

Rubi [A]  time = 0.070859, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {3013, 373} \[ -\frac{(A+4 C) \sin ^7(c+d x)}{7 d}+\frac{3 (A+2 C) \sin ^5(c+d x)}{5 d}-\frac{(3 A+4 C) \sin ^3(c+d x)}{3 d}+\frac{(A+C) \sin (c+d x)}{d}+\frac{C \sin ^9(c+d x)}{9 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^7*(A + C*Cos[c + d*x]^2),x]

[Out]

((A + C)*Sin[c + d*x])/d - ((3*A + 4*C)*Sin[c + d*x]^3)/(3*d) + (3*(A + 2*C)*Sin[c + d*x]^5)/(5*d) - ((A + 4*C
)*Sin[c + d*x]^7)/(7*d) + (C*Sin[c + d*x]^9)/(9*d)

Rule 3013

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Dist[f^(-1), Subst[I
nt[(1 - x^2)^((m - 1)/2)*(A + C - C*x^2), x], x, Cos[e + f*x]], x] /; FreeQ[{e, f, A, C}, x] && IGtQ[(m + 1)/2
, 0]

Rule 373

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n
)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && IGtQ[q, 0]

Rubi steps

\begin{align*} \int \cos ^7(c+d x) \left (A+C \cos ^2(c+d x)\right ) \, dx &=-\frac{\operatorname{Subst}\left (\int \left (1-x^2\right )^3 \left (A+C-C x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \left (A \left (1+\frac{C}{A}\right )-(3 A+4 C) x^2+3 (A+2 C) x^4-(A+4 C) x^6+C x^8\right ) \, dx,x,-\sin (c+d x)\right )}{d}\\ &=\frac{(A+C) \sin (c+d x)}{d}-\frac{(3 A+4 C) \sin ^3(c+d x)}{3 d}+\frac{3 (A+2 C) \sin ^5(c+d x)}{5 d}-\frac{(A+4 C) \sin ^7(c+d x)}{7 d}+\frac{C \sin ^9(c+d x)}{9 d}\\ \end{align*}

Mathematica [A]  time = 0.0491361, size = 133, normalized size = 1.45 \[ -\frac{A \sin ^7(c+d x)}{7 d}+\frac{3 A \sin ^5(c+d x)}{5 d}-\frac{A \sin ^3(c+d x)}{d}+\frac{A \sin (c+d x)}{d}+\frac{C \sin ^9(c+d x)}{9 d}-\frac{4 C \sin ^7(c+d x)}{7 d}+\frac{6 C \sin ^5(c+d x)}{5 d}-\frac{4 C \sin ^3(c+d x)}{3 d}+\frac{C \sin (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^7*(A + C*Cos[c + d*x]^2),x]

[Out]

(A*Sin[c + d*x])/d + (C*Sin[c + d*x])/d - (A*Sin[c + d*x]^3)/d - (4*C*Sin[c + d*x]^3)/(3*d) + (3*A*Sin[c + d*x
]^5)/(5*d) + (6*C*Sin[c + d*x]^5)/(5*d) - (A*Sin[c + d*x]^7)/(7*d) - (4*C*Sin[c + d*x]^7)/(7*d) + (C*Sin[c + d
*x]^9)/(9*d)

________________________________________________________________________________________

Maple [A]  time = 0.044, size = 94, normalized size = 1. \begin{align*}{\frac{1}{d} \left ({\frac{C\sin \left ( dx+c \right ) }{9} \left ({\frac{128}{35}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{8}+{\frac{8\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}}{7}}+{\frac{48\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{35}}+{\frac{64\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{35}} \right ) }+{\frac{A\sin \left ( dx+c \right ) }{7} \left ({\frac{16}{5}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{6}+{\frac{6\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{5}}+{\frac{8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{5}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^7*(A+C*cos(d*x+c)^2),x)

[Out]

1/d*(1/9*C*(128/35+cos(d*x+c)^8+8/7*cos(d*x+c)^6+48/35*cos(d*x+c)^4+64/35*cos(d*x+c)^2)*sin(d*x+c)+1/7*A*(16/5
+cos(d*x+c)^6+6/5*cos(d*x+c)^4+8/5*cos(d*x+c)^2)*sin(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.06933, size = 101, normalized size = 1.1 \begin{align*} \frac{35 \, C \sin \left (d x + c\right )^{9} - 45 \,{\left (A + 4 \, C\right )} \sin \left (d x + c\right )^{7} + 189 \,{\left (A + 2 \, C\right )} \sin \left (d x + c\right )^{5} - 105 \,{\left (3 \, A + 4 \, C\right )} \sin \left (d x + c\right )^{3} + 315 \,{\left (A + C\right )} \sin \left (d x + c\right )}{315 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7*(A+C*cos(d*x+c)^2),x, algorithm="maxima")

[Out]

1/315*(35*C*sin(d*x + c)^9 - 45*(A + 4*C)*sin(d*x + c)^7 + 189*(A + 2*C)*sin(d*x + c)^5 - 105*(3*A + 4*C)*sin(
d*x + c)^3 + 315*(A + C)*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.64835, size = 207, normalized size = 2.25 \begin{align*} \frac{{\left (35 \, C \cos \left (d x + c\right )^{8} + 5 \,{\left (9 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{6} + 6 \,{\left (9 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{4} + 8 \,{\left (9 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{2} + 144 \, A + 128 \, C\right )} \sin \left (d x + c\right )}{315 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7*(A+C*cos(d*x+c)^2),x, algorithm="fricas")

[Out]

1/315*(35*C*cos(d*x + c)^8 + 5*(9*A + 8*C)*cos(d*x + c)^6 + 6*(9*A + 8*C)*cos(d*x + c)^4 + 8*(9*A + 8*C)*cos(d
*x + c)^2 + 144*A + 128*C)*sin(d*x + c)/d

________________________________________________________________________________________

Sympy [A]  time = 34.2829, size = 199, normalized size = 2.16 \begin{align*} \begin{cases} \frac{16 A \sin ^{7}{\left (c + d x \right )}}{35 d} + \frac{8 A \sin ^{5}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} + \frac{2 A \sin ^{3}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac{A \sin{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{d} + \frac{128 C \sin ^{9}{\left (c + d x \right )}}{315 d} + \frac{64 C \sin ^{7}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{35 d} + \frac{16 C \sin ^{5}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{5 d} + \frac{8 C \sin ^{3}{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{3 d} + \frac{C \sin{\left (c + d x \right )} \cos ^{8}{\left (c + d x \right )}}{d} & \text{for}\: d \neq 0 \\x \left (A + C \cos ^{2}{\left (c \right )}\right ) \cos ^{7}{\left (c \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**7*(A+C*cos(d*x+c)**2),x)

[Out]

Piecewise((16*A*sin(c + d*x)**7/(35*d) + 8*A*sin(c + d*x)**5*cos(c + d*x)**2/(5*d) + 2*A*sin(c + d*x)**3*cos(c
 + d*x)**4/d + A*sin(c + d*x)*cos(c + d*x)**6/d + 128*C*sin(c + d*x)**9/(315*d) + 64*C*sin(c + d*x)**7*cos(c +
 d*x)**2/(35*d) + 16*C*sin(c + d*x)**5*cos(c + d*x)**4/(5*d) + 8*C*sin(c + d*x)**3*cos(c + d*x)**6/(3*d) + C*s
in(c + d*x)*cos(c + d*x)**8/d, Ne(d, 0)), (x*(A + C*cos(c)**2)*cos(c)**7, True))

________________________________________________________________________________________

Giac [A]  time = 1.15034, size = 126, normalized size = 1.37 \begin{align*} \frac{C \sin \left (9 \, d x + 9 \, c\right )}{2304 \, d} + \frac{{\left (4 \, A + 9 \, C\right )} \sin \left (7 \, d x + 7 \, c\right )}{1792 \, d} + \frac{{\left (7 \, A + 9 \, C\right )} \sin \left (5 \, d x + 5 \, c\right )}{320 \, d} + \frac{7 \,{\left (A + C\right )} \sin \left (3 \, d x + 3 \, c\right )}{64 \, d} + \frac{7 \,{\left (10 \, A + 9 \, C\right )} \sin \left (d x + c\right )}{128 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^7*(A+C*cos(d*x+c)^2),x, algorithm="giac")

[Out]

1/2304*C*sin(9*d*x + 9*c)/d + 1/1792*(4*A + 9*C)*sin(7*d*x + 7*c)/d + 1/320*(7*A + 9*C)*sin(5*d*x + 5*c)/d + 7
/64*(A + C)*sin(3*d*x + 3*c)/d + 7/128*(10*A + 9*C)*sin(d*x + c)/d